
www.directions4partners.com

Directions ASIA 2023
The Power of Open-Source D365 (not only) base app



Tomas Kapitan (Fusion5)

Fusion5 AU/NZ

@KeptyCZ

@tomaskapitan

https://www.kepty.cz

Jesper Schulz-Wedde

Microsoft

@JesperSchulz

@jesper-schulz-wedde

#makingpotentialreality



Agenda

• The contribution process:
• Why Open Source?

• Get your contribution suggestion approved

• Get your development environment setup

• Create your PR and get it to the finish line

• Hands on experiences from a partner’s 

perspective
• Code review process - it's give and take!

• A developer’s notes

• What's next? Which changes are to come?

• Q&A



Why Open Source?



Why have a contribution model?

Accelerate Product Growth

Improve Product Quality & Auditability

Enhance Extensibility, Customizability & Compatibility

Foster Collaboration

Develop Community



The contribution process
Phase I: Get your idea approved for contribution



How does Microsoft work internally?

Customer reported product defects (support cases, repair items and hotfix requests)
Procedural issues (e.g., blocking work processes)

Data issues (e.g., generating faulty data)

Partner reported product defects
Papercuts (typically fixed by themselves in a code customization model)

Design change requests (added to prioritized backlog)

Collaboration requests (helping partner resolve an issue on their end)

Extensibility requests and issues (currently processed by separate team)

Internally reported product defects
Come in all shapes and sizes

Part of internal epics (e.g., fundamentals, onboarding, manufacturing)
Large stories which improve the product all up

Partner reported ideas (aka.ms/bcideas)
Ideas of various nature and various sizes



How do things look on GitHub?

One work item to rule them all: issues!

“GitHub’s issue tracking is unique because of our 

focus on simplicity, references, and elegant 

formatting.”
https://github.com/features/issues

https://github.com/features/issues


Challenge

GitHub



The normal flow of work

Partner

Support

Customer

Product Manager Developer



The normal flow of work

Partner

Customer

Product Manager Developer



How does GitHub fit into this?

Support Product Manager Developer

Partner

Customer



How does GitHub fit into this?

Partner

Customer

Product Manager Developer



What will the Product Managers approve?

Always

• Papercuts
• Missing fields on pages

• Missing fields in data sets

• Typos or missing tooltips

• Missing actions found 

elsewhere

• Alignment of experience

• Improvements to tests

• New horizontal 

building blocks

• Bug-fixes without 

direct impact on 

production.

Sometimes

• Changes to existing 

business logic

• Very large and 

complex 

contributions

Never

• Product Defects with 

customer impact

• Work on 

localizations

• Currently: Event 

Requests



Conclusion

Small issues correspond to bugs (internally in Microsoft). They can get 

created as issues on GitHub and will very likely get approved by the Microsoft 

product group.

Larger issues correspond to slices. They need to start their life as BCIdeas and 

need to get approved by a Microsoft product manager to fit the overall 

development strategy.

While Microsoft is working on moving the internal development of all apps 

(incl. the Base Application) out on GitHub, some “bridging the gap” is needed. 

Defining that bridge was/is the goal of the pilot.



Create your GitHub issue

And get it “ready for implementation”



Demo 1

https://kepty.cz/OS-Bangkog-Demo1.mp4

(demos are created by Jesper, Microsoft)

https://kepty.cz/wp-content/uploads/2023/05/2023-04-28-PowerOfOpenSourceBaseApp-Bangkog-Demo1.mp4


The contribution process
Phase II: Get your development environment set up



It’s easy – really…

Once you know how!

So, let’s take 10 minutes to walk you through

the setup process of a Business Central

development machine.

We’ll be with you every single step of the way!



First things first: You need a PC



Requirements for getting started

GitHub 

Account
Basic git 

understanding

Visual 

Studio Code

AL Language 

Extension



Get your development environment set up

From 0 to contribution hero in 30 minutes



Demo 2

https://kepty.cz/OS-Bangkog-Demo2.mp4

(demos are created by Jesper, Microsoft)

https://kepty.cz/wp-content/uploads/2023/05/2023-04-28-PowerOfOpenSourceBaseApp-Bangkog-Demo2.mp4


What other settings 

should one make?

Enable RAD!



The contribution process
Phase III: Create a PR and get it released



Create your Pull Request

And get it released



Demo 3

https://kepty.cz/OS-Bangkog-Demo3.mp4

(demos are created by Jesper, Microsoft)

https://kepty.cz/wp-content/uploads/2023/05/2023-04-28-PowerOfOpenSourceBaseApp-Bangkog-Demo3.mp4


Create a PR and get it released

Prerequisite: Have a local repository based on the forked repository

1) Create a new branch locally
Be sure you are in the main branch and that this branch is up-to-date

Create a new branch in VS Code

Use the issue ID as the first part of the branch name

2) Do your development

3) Commit your changes and publish the branch



Create a PR and get it released

4) Create a new pull request
Once a new branch with changes is pushed to the remote repository, GitHub automatically suggest creating a pull request

5) Link newly created pull request to the original issue

6) Assign the “Needs community review/approval” label

7) Respond to all suggestions/change requests
It is not just about creating PR, but we need to ensure that suggestions from code 

reviewers are resolved. Otherwise, our changes will not be deployed.



You already know how to become the contribution hero in 30 minutes.

So, you can not be the true hero without reviewing Pull Requests

But true heroes are born by helping others…



Why should we do code review?

You can learn a lot from others.

You can teach others.

You can shape the change and suggest other smaller improvements.

And without code review & code reviewers, our changes will not be approved by Microsoft ☺

Code Review is one of the most important processes in which any developer should be involved. 

By reading and trying to understand code made by other developers (and the ideas behind the 

code), any developer can improve their skills much more quickly and efficiently than by any 

different approach.



Why should we do code review?

Some stats from existing PRs

 14 open PRs as of now

 51 closed PRs in total

 9 rejected PRs

 15 authors of closed PRs

 9 with 3+ approved PRs

 3 with rejected PRs only

 2 new authors of open PRs

But only +/- 6 active 

community code reviewers!



A Developer’s Notes
What should I know?



Developer’s notes

Always follow best practices and design patterns.

• Best Practices for AL code - Business Central | Microsoft Learn

• alguidelines.dev - Business Central Design Patterns

Try to follow the existing code structure … but do not follow old, non-optimal, practices! 

Fix existing code warnings only if they are in the code you are “touching”. Otherwise, following 

what was changed during the code review is much more complicated.

Discuss the planned change with others if you are not entirely sure.

Try to react to requested changes from the code review as soon as possible. It is always 

complicated (for you as a developer) to respond to suggestions after a few months.

Tests are mandatory for all (almost) changes.

https://learn.microsoft.com/en-us/dynamics365/business-central/dev-itpro/compliance/apptest-bestpracticesforalcode
https://alguidelines.dev/


Developer’s notes – tests

Sometimes it could be hard to figure out where the new tests belong to. There are more than 

1400 test Codeunits, and the structure is not always clear.

You can search for the table/functionality in “\App\Layers\W1\Tests”. Usually, similar tests are 

split across more Codeunits, so it’s up to you to figure out the best place.

Many tests for standard functionality are in the ERM folder.

If you need a new procedures to mock some data, add them to the TestLibraries app folder for 

better reusability.



Our experience
with the pilot program

…it is a pilot. There can be mistakes. 

But when I look back it is really a great thing 

and together we make the pilot better and better. 

There is a lot of progress on it!

Besides creating my own PR's, I'm a big fan of 

code reviewing now and then as well... 

just to try to learn from the pro's ;)



What’s Next?



CI CD/

“AL:Go for GitHub” powered!

What’s Next?



What’s Next for the 

pilot?

- CI/CD advancements

- Code review improvements

- Issue categorization 

improvements



Time to wrap up…



Do you have any questions?



Next steps
Learn, educate, activate

What’s new in 2023 release wave 1
aka.ms/BCReleasePlan

Join the conversation
aka.ms/BCYammer

Leverage learning courses
aka.ms/BCLearn 

Follow us on Twitter
https://twitter.com/MSDYN365BC

Submit your ideas
aka.ms/BCideas

https://twitter.com/MSDYN365BC


www.directions4partners.com

Thank you !
Please rate the session in the Conference App !


	Intro
	Slide 1
	Slide 2
	Slide 3: Agenda

	Why Open Source? (Jesper)
	Slide 4: Why Open Source?
	Slide 5: Why have a contribution model?

	The Contribution Process (Jesper)
	Slide 6: The contribution process Phase I: Get your idea approved for contribution
	Slide 7: How does Microsoft work internally?
	Slide 8: How do things look on GitHub?
	Slide 9: Challenge
	Slide 10: The normal flow of work
	Slide 11: The normal flow of work
	Slide 12: How does GitHub fit into this?
	Slide 13: How does GitHub fit into this?
	Slide 14: What will the Product Managers approve?
	Slide 15: Conclusion
	Slide 16: Create your GitHub issue
	Slide 17
	Slide 18: The contribution process Phase II: Get your development environment set up
	Slide 19: It’s easy – really…
	Slide 20: First things first: You need a PC
	Slide 21: Requirements for getting started
	Slide 22: Get your development environment set up
	Slide 23
	Slide 24: What other settings should one make?

	PRs (Tomas)
	Slide 25: The contribution process Phase III: Create a PR and get it released
	Slide 26: Create your Pull Request
	Slide 27
	Slide 28: Create a PR and get it released
	Slide 29: Create a PR and get it released
	Slide 30
	Slide 31: Why should we do code review?
	Slide 32: Why should we do code review?

	Developer's notes (Tomas)
	Slide 33: A Developer’s Notes What should I know?
	Slide 34: Developer’s notes
	Slide 35: Developer’s notes – tests

	Comments (Tomas)
	Slide 36: Our experience with the pilot program

	What's Next (Jesper)
	Slide 37: What’s Next?
	Slide 38: What’s Next?
	Slide 39: What’s Next for the pilot?

	Wrap Up
	Slide 40: Time to wrap up…
	Slide 41: Do you have any questions?
	Slide 42: Next steps
	Slide 43


